bidentate ligands and the conformations of the rings formed by these ligands are determined by a large number of intermolecular contacts.

Acknowledgment. The research performed at Oak Ridge National Laboratory was sponsored by the Division of Material Sciences, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract W-7405-eng-26 with the Union Carbide Corp. The research performed at the University of Georgia was supported partially by the US. Air Force Office

Registry No. {CH₃N[P(OCH₃)₂]₂]₂Co₂(CO)₄, 81011-78-1; Co₂-(CO)₈, 10210-68-1; CH₃N[P(OCH₃)₂]₂, 34244-05-8; CH₃N(PCl₂)₂, **17648-16-7;** methanol, **67-56-1.**

Supplementary Material Available: A table of coordinates and thermal parameters of the hydrogen atoms and a listing of observed and calculated values of *P,* with estimated standard errors of the former **(22** pages). Ordering information is given on any current masthead page.

Contribution from the Department of Chemistry, University of Nevada, Reno, Nevada **89557,** and the Laboratoire CNRS-SNPE, **94320** Thiais, France

Intra- and Intermolecular Equilibria and Their Pertinence to the Mechanism of Cis-Trans Isomerization of L_2PtX_2 Complexes: Four- and Five-Coordinate Platinum **Phosphole Complexes**

J. JEFFREY MACDOUGALL,^{1a} JOHN H. NELSON,*^{1a} and FRANCOIS MATHEY*^{1b}

Received *August* **20,** *1981*

A series of platinum(II) complexes of the type L_2PtX_2 ($L = 1-R-3,4$ -dimethylphosphole; $R = -CH_3$, $- n-C_4H_9$, $- t-C_4H_9$, $-C_6H_5$, $-CH_2C_6H_5$; $X = Cl^-$, Br^- , I^-) have been prepared and characterized by elemental analyses, physical properties, conductance measurements, infrared spectroscopy, and ¹H, ¹³C^{{1}H}, ³¹P{¹H}, and ¹⁹⁵Pt{¹H} NMR spectroscopy. All complexes are nonelectrolytes in chloroform and methanol solutions and most possess the cis geometry in solution as well as in the solid state. Variable-temperature $3^{1}P{^{1}H}$ and $1^{95}P{^{1}H}$ NMR spectroscopy and conductance studies of the equilibrium L_2 PtX₂ + L \rightleftharpoons L_3 PtX₂ have been analyzed in terms of intra- and intermolecular equilibria of the pentacoordinate species L_3PtX_2 . The formation of L_3PtX_2 is enthalpy favored and entropy disfavored. The relative thermodynamic stability of the L_3PtX_2 complexes is a function of ligand steric bulk; the smaller ligand gives the greater stability. The stereochemical rigidity of the L_3 PtX₂ complexes is inversely proportional to ligand steric bulk: the larger the ligand, the more rigid the L₃PtX₂ complex. The relationship of these observations to the mechanism of cis-trans isomerization of L₂MX₂ (M = Pd, Pt) is discussed. Coordination chemical shift relationships of the form $\Delta \delta({}^{31}P) = A[\delta({}^{31}P_{\text{ligand}})] + B$ were found for the four-coordinate L_2PtX_2 complexes and for both of the magnetically inequivalent phosphole ligands in the five-coordinate L3PtX2 complexes. The complexes cis-L2PtBrC1, which are intermediates in the bromide ligand substitution reactions of cis-L₂PtCl₂, were isolated and characterized. They demonstrate that anion ligand substitution of cis-L₂PtCl₂ complexes occurs with complete retention of configuration. This is direct evidence of the kinetic **trans** effect. In contrast, iodide substitution of L_2 PtCl₂ to produce L_2 PtI₂ is accompanied by some cis-trans isomerization, as mixtures of *cis-* and trans-L₂PtI₂ are formed in these reactions. This is evidence of the thermodynamic trans effect. The L₂PtBrCl complexes react with excess L to form $L_3PtBrCl$ rather than $[L_3PtBr]Cl$ or $[L_3PtCl]Br$ in support of the contention that the equilibrium can be best described **as** L_2 **PtX₂** + L \rightleftharpoons L₃PtX₂ and not **as L₂PtX₂** + L \rightleftharpoons [L₃PtX]X. Thus, five-coordinate complexes and not ionic four-coordinate complexes are formed in solutions of L_2 PtX₂ upon addition of excess ligand (L). The implications of this in regard to consecutive anion displacement for isomerization of L_2PtX_2 complexes is discussed.

Much effort 2^{-18} has been expended toward understanding the mechanisms of ligand substitution and isomerization of

- (1) (a) University of Nevada. (b) Laboratoire CNRS-SNPE.
- (2) Basolo, F.; Pearson, R. G. "Mechanisms of Inorganic Reactions", 2nd ed.; Wiley: New York, 1967.
- (3) Haake, P.; Pfeffer, R. M. *J. Chem. SOC. D* 1969, 1330; *J. Am. Chem. Soc.* 1970, 92, 5243.
-
- (4) Haake, P.; Pfeiffer, R. M. *J. Am. Chem. SOC.* 1970, 92, 4996. *(5)* Faraone, G.; Ricevuto, U.; Romeo, R.; Trozzi, M. *J. Chem. SOC. A* 1971, 1877.
- (6) Cooper, D. G.; Powell, J. *Can. J. Chem.* 1973, 51, 1634.
- (7) Cooper, D. G.; Powell, J. *J. Am. Chem. SOC.* 1973, 95, 1102.
-
-
- (8) Redfield, D. A.; Nelson, J. H. *Inorg. Chem.* 1973, 12, 15.
(9) Louw, W. J. J. Chem. Soc., Chem. Commun. 1974, 353.
(10) Redfield, D. A.; Nelson, J. H. J. Am. Chem. Soc. 1974, 96, 6219.
(11) Powell, J.; Cooper, D. G. J
-
- (12) Redfield, D. A.; Nelson, J. H.; Henry, R. A.; Moore, D. W.; Jonassen, H. B. J. Am. Chem. Soc. 1974, 96, 6298.
(13) Redfield, D. A.; Cary, L. W.; Nelson, J. H. *Inorg. Chem.* 1975, 14, 50. (14) Redfield, D. A.; Cary, L
-
- (15) Romeo, R.; Minniti, D.; Trozzi, M. *Inorg. Chem.* 1976, 15, 1134. (16) Louw, W. J. *Inorg. Chem.* 1977, 16, 2147. (17) Romeo, R. *Inorg. Chem.* 1978, 17, 2040.
-
-
- (18) Favez, R.; Roulet, R.; Pinkerton, **A,;** Schwarzenbach, D. *Inorg. Chem.* 1980, 19, 1356.

Introduction Introduction square-planar transition-metal complexes. While it is becoming clearer that pentacoordinate species are involved^{2,4,9,16,19-21} in these processes, there is little information¹⁸ regarding the solution structure and reactivity of pentacoordinate $Pd(II)$ and $Pt(II)$ ML_3X_2 complexes. Sterically undemanding ligands that possess both strong σ -donor and π -acceptor abilities are held^{14,22,23} to be an important stabilizing influence on these pentacoordinate complexes. Of the few $d⁸$ pentacoordinate species that have been characterized, most have involved phospholes^{24,25} or trimethylphosphine.²⁶ Superficially, phosphole $(I, R^1 = R = H)$ is very similar to the

- (19) Cattalini, L. *Prog. Inorg. Chem.* 1970, 13, 263.
- **(20)** Hartley, F. R. *Chem. SOC. Rev.* 1973, 2, 163.
- (21) Langford, C. H.; Gray, H. B. "Ligand Substitution Processes"; W. **A.** Benjamin: New York, 1965.
- (22) Wood, J. *S. Prog. Inorg. Chem.* 1972, 16, 227. (23) Burdett, J. K. *Inorg. Chem.* 1977, 16, 3013.
-
- (24) Chui, K. M.; Powell, H. M. *J. Chem. Soc., Dalron Trans.* 1974, 1879. *(25)* Chui, K. M.; Powell, H. M. J. *Chem. SOC., Dalton Trans.* 1974,2117.
- (26) Merle, **A.;** Dartiguenave, M.; Dartiguenave, Y.; Dawson, I. W.; Gray, H. B. J. *Coord. Chem.* 1974, 3, 199. Dawson, I. W.; Bryant, T. I.; Robinson, N. R.; Merle, **A.;** Dartiguenave, M.; Dartiguenave, Y.; Gray, H. B. *J. Am. Chem. SOC.* 1974,96,4428. Meier, P.; Merbach, **A.** E.; Dartiguenave, M.; Dartiguenave, Y. *Ibid.* 1976, 98, 6402. Dartiguenave, M.; Dartiguenave, **Y.;** Gleizes, **A.;** Saint-Joly, C.; Galy, J.; Meier, P.; Merbach, **A.** E. *Inorg. Chem.* 1978, 17, 3503.

0020-1669/82/1321-2145\$01.25/0 *0* **1982** American Chemical Society

aromatic pyrrole molecule, and studies regarding the possible aromatic character of phosphole and its derivatives have been reviewed. 27 The interaction of the phosphorus lone pair with the ring butadiene π system would clearly affect the donor character of the phosphorus atom. We recently demonstrated^{28,29} that 1-substituted 3,4-dimethylphosphole (II) forms **bonds** with Pd(I1) of comparable or greater strength than **those** between Pd(I1) and structurally similar phosphines. There is convincing evidence²⁹ for the involvement of pentacoordinate intermediates or transition states in the cis-trans isomerization of these Pd(I1)-phosphole complexes. Square-planar Pt(I1) complexes are more inert² toward ligand substitution than their Pd(I1) counterparts, and we might expect the same trend for the pentacoordinate Pt(I1) **species** as well, making them more amenable to study by NMR than the Pd(I1) complexes. With this in mind we prepared and characterized the series L_2 Pt X_2 $(L = IIa-e, X = CI, Br, I)$ and investigated their solution behavior, both in solution alone and in solution in the presence of excess phosphole. We hoped through this study to be able to present a more unified picture of the isomerization mechanism of four-coordinate complexes.

Experimental Section

A. Reagents and Physical Measurements. Chemicals were reagent grade and were used as received or synthesized as described below. All solvents were dried when necessary by standard procedures and stored over Linde **4A** molecular sieves. Melting **points** were determined on a Mel-Temp apparatus and are uncorrected.

Conductivity studies were performed **as** described previously.28 The complexes are not electrolytes in $CH₃OH$ and $CH₂Cl₂$ in the presence and absence of excess ligand.

Infrared spectra were recorded on a Perkin-Elmer **599** spectrophotometer as Nujol mulls between CsBr plates.

The ${}^{1}H$, ${}^{13}C{}^{11}H$ }, ${}^{31}P{}^{11}H$ }, and ${}^{195}Pt{}^{11}H$ } NMR spectra were recorded at **99.54, 25.00, 40.26,** and **21.30** MHz, respectively, on a JEOL FX-100 spectrometer in the **FT** mode. Proton and carbon chemical shifts are downfield relative to internal $Me₄Si$, while the phosphorus chemical shifts are relative to 85% H₃PO₄. A positive value of δ ⁽³¹P) indicates a downfield position relative to that of the reference. Platinum- **195** chemical shifts are referenced to the standard frequency³⁰ 21.4 MHz relative to the proton resonance of Me₄Si at exactly 100 MHz. NMR solvents were spectroscopic grade and were used as received from the manufacturer. Preparation of samples for NMR analyses has been described.⁸

Equilibrium constants for the equilibria $L_2PtX_2 + L \rightleftharpoons L_3PtX_2$ were obtained at various temperatures by integrating the areas under
the appropriate ³¹P{¹H} NMR signals for CDCl₃ solutions containing a 1:1 mole ratio of L and L_2 PtX₂. Plots of $\ln K_{eq}$ vs. T^{-1} were treated by least-squares analyses to obtain ΔH^* and ΔS^* .

B. Syntheses. The phospholes were prepared by previously described methods³¹ and were handled and allowed to react with other

- (28) MacDougall, J. J.; Nelson, J. H.; Mathey, F.; Mayerle, J. J. *Inorg. Chem.* **1980**, *19*, 709.
- **(29) Machugall, J. J.; Mathey, F.; Nelson, J. H.** *Inorg. Chem.* **1980,** *19,* **1400.**

Figure 1. ³¹P{¹H} NMR of $(1,3,4\text{-}$ trimethylphosphole)₂PtI₂ showing cis and trans isomers in CH₂Cl₂ at 300 K.

chemicals in a nitrogen atmosphere. The chloride complexes were prepared by reacting a 1:1 v/v ethanol-water solution of K_2PtCl_4 with twice the stoichiometric amount of the appropriate phosphole dissolved in ethanol and were precipitated upon addition of excess water. The bromides and iodides were prepared by metatheses of the chloride complexes in ethanol. Care must be taken, especially in preparing the bromide complexes, that sufficient time is allowed for the metathesis reaction to go to completion **(72** h to be safe) as platinum is robust; otherwise the mixed-halide species will be isolated in place of the desired homogeneous product (vide infra). The solvent was then removed on a rotary evaporator, and the residue was extracted with $CH₂Cl₂$, from which crystals ensued upon addition of hexane. The complexes were recrystallized from ethanol-water or acetonewater mixtures and were vacuum-dried at room temperature. Elemental analyses (Table I) were performed by Galbraith Laboratories, Knoxville, TN **37921.**

Results and Discussion

I. **Four-Coordinate Complexes.** Elemental analyses, spectroscopic data, and the absence of solution conductance all indicate that phospholes IIa-e form typical square-planar L_2 Pt X_2 complexes that do not readily dissociate in either $CH₂Cl₂$ or $CH₃OH$ solutions. Infrared spectroscopy (Table 11) shows that these complexes are primarily cis in the solid state, as indicated³² by the appearance of two bands for ν -(Pt-X) and ν (Pt-P). Proton NMR (Table III) and ¹³C(¹H) NMR (Table IV) exhibit line shapes and coupling constants that are very similar to **those** exhibited by the analogous Pd(I1) phosphole complexes²⁸ and suggest that the cis complexes are the dominant species in solution. The $^{31}P(^{1}H)$ NMR and ¹⁹⁵Pt(¹H) NMR spectra (Table V) also indicate that the L_2 PtX₂ complexes are predominantly cis in $CH₂Cl₂$ solution at 25 °C.

⁽²⁷⁾ Hughes, A. N. *Sfud. Org. Chem. (Amsterdam)* **1979,** *3.* **Mathey, F.** *Top. Phosphorus Chem.* **1980,** *10.* **Quin, L. D. "The Heterocyclic Chemistry of Phosphorus"; Wiley-Interscience: New York, 1981.**

⁽³⁰⁾ Goggin, P. L.; Goodfellow, R. J.; Haddock, S. R.; Taylor, B. F.; Marshall, I. R. H. *J. Chem. SOC., Dalton Trans.* **1976, 459.**

⁽³¹⁾ Mathey, F.; Mankowski-Favelier, R. *Org. Magn. Reson.* **1972,4, 171. Mathey, F. Tetrahedron 1972, 28, 417**

⁽³²⁾ Assignments were made consistent with those of: Duddell, D. A.; Goggin, **P. L.; Goodfellow, R. J.; Norton, M. G.; Smith, J. G.** *J. Chem. SOC. A* **1970, 545. Goggin, P. L.; Goodfellow, R. J.; Reed, F. J. S.** *J. Chem. Soc., Dalton Tram.* **1972, 1298. Reference 25.**

Table I. Physical Data for the (1-R-3,4-dimethylphosphole)₂PtX₂ Complexes

	X	color	% yield	dec pt, $^{\circ}C$	anal.			
R					% C		% H	
					calcd	found	calcd	found
CH ₃	C ₁	pale yellow plates	74.5	>320	32.46	32.48	4.25	4.37
$n\text{-}C_{4}H_{9}$	C1	pale yellow plates	79.2	$157 - 158$	39.90	39.24	5.65	5.52
t -C ₄ H ₉	C1	colorless needles	89.3	>310 dec	39.90	39.39	5.65	5.61
$C_6H_5CH_2$	C ₁	pale vellow needles	86.5	$210 - 213$	46.60	46.67	4.48	4.57
C_6H_5	C ₁	pale yellow cubes	79.0	$214 - 216$	44.89	44.74	4.05	4.16
CH ₃	Br	pale yellow needles	91.5	>300	27.70	27.56	3.62	3.46
$n\text{-}C_{\text{A}}H_{\text{a}}$	Br	pale yellow microcrystals	99.5	139-140	34.76	34.79	4.92	5.04
$t\text{-}C_4H_9$	Br	pale yellow plates	62.6	>300	34.76	34.58	4.92	4.86
$C_6H_5CH_2$	Br	pale yellow microcrystals	96.5	197-198	41.14	41.00	3.95	3.69
C_6H_5	Вr	pale orange cubes	93.9	220-221	39.43	39.26	3.56	3.38
CH ₃	\mathbf{I}	orange needles	93.2	$264 - 266$	23.99	23.79	3.14	3.03
$n\text{-}C_4H_9$		orange microcrystals	54.8	128-130	30.60	30.51	4.33	4.18
$t\text{-}C_4H_2$		golden needles	98.5	>300	30.60	30.82	4.33	4.22
$C_6H_5CH_2$		yellow needles	95.3	182-183	36.61	36.41	3.51	3.52
C_6H_5		golden needles	99.4	$223 - 224$	34.97	34.91	3.15	3.13

Table **11.** Infrared Spectral Data in the 200-600 cm-' Range for $(1-R-3,4-dimethylphosphate)$ ₂ $PtX₂$ (ν , cm⁻¹)

^a Occurs below 225 cm⁻¹ and is not observable on our instrument.

Figure 2. $^{195}Pt(^{1}H) NMR$ of (1-benzyl-3,4-dimethylphosphole)₂PtI₂ showing cis and trans isomers in CH_2Cl_2 at 300 K.

Figures 1 and 2 exhibit typical $^{31}P(^{1}H)$ and $^{195}P(^{1}H)$ NMR spectra, respectively, where both *cis*- and *trans*- L_2 Pt X_2 are present together in solution. For each isomer, the $3^{1}P\{^{1}H\}$ spectrum typically shows a single resonance due to 66.2% of the phosphorus nuclei coordinated to platinum nuclei other than 195 Pt, with an overlapping doublet from the remaining 33.8% of the phosphorus nuclei coupled to ¹⁹⁵Pt $(I = \frac{1}{2})$,

^{*a*} Chemical shifts in ppm relative to internal Me₄Si: $s =$ singlet, $d =$ doublet, $t =$ triplet, "t" = non-1:2:1 triplet. ^{*b*} "J_{PH}" = $|^{n}$ J_{PH} + $n+2 J_{\text{PH}}$, NO = not observed; all *J* values in hertz.

Table IV. Carbon-13 Data for (1-R-3,4-dimethylphosphole)₂PtX₂ Complexes^a

^a NO indicates that a signal was either not observed or not able to be assigned; s = singlet, d = doublet, t = triplet, f = five-line multiplet.

Table **V.** ³¹ **P** $\{^1H\}$ and 195 **Pt** $\{^1H\}$ **NMR** Spectral Data for L_2 **Pt** X_2

 $L = 1-R-3$, 4-dimethylphosphole $\mathbf R$ $\mathbf X$ $\frac{\delta({}^{31}P_{ligand})^a}{-20.2}$ $\delta(^{31}P_{\text{complex}})^a$ $\Delta\delta$ ³¹P)^b J_{PtP}^a $\delta(^{195}Pt)^c$ geometry -2.1 CH, c1 3291 18.1 138 cis n-Bu c1 -6.5 9 15.5 3301 96 cis t-Bu *cl* $+27.5$ 39.1 12.2 3306 17 cis *cl* 8.1 3345 Ph -2.5 10.6 50 cis -3.0
 -20.2
 -6.5
 $+27.5$
 -2.5 Bzl *cl* -3.0 11.4 14.4 3381 71 cis Br $- 144$ **cH3** -1.8 18.4 3236 cis n-Bu Br -6.5
+27.5 9.3 15.8 3242 -198 cis t-Bu Br 27.1 -0.4 3258 -312 cis **Ph** Br -2.5 7.9 10.4 3268 -272 cis Bzl Br -3.0 11.6 14.6 3325 -217 cis CH,
CH,
t Pu I $- 20.2$ -3.2 17.0 3 079 -350 cis $- 20.2$ -3.8 2217 -439 **I** 16.4 trans **NO** t-Bu I $+27.5$ 24.8 2.7 3120 cis t-BU I $+27.5$ 24.8 2.7 2273 NO trans Ph I -2.5 5.6 8.1 3125 -343 cis -3.0 9.1 Bzl I 12.1 3157 -348 cis I -3.0 8.5 11.5 226 7 -438 Bzl trans $L = Phosphine$ $\mathbf x$ $\Delta\delta$ ⁽³¹P)^b $\delta(^{195}Pt)^C$ phosphine geometry Bz1₃P Cl - 12.9 4.7 17.6 3652 185 cis Bz1₃P C1 -12.9 5.3 18.2 2462 553 trans $Bz1_2$ PhP C1 -12.1 8.4 20.5 2534 543 trans Bzl₂PhP C1 - 12.1 8.4 20.5 2534 543 tran
BzlPh₂P C1 - 10.4 9.0 19.4 373*5* 109 cis $n-Bu_1P$ c1 -32.8 0.1 32.7 3508 81 cis $E_{t_3}P$ c1 -20.4 8.6 29.0 3509 43 cis $E_{t_3}^{\bullet}$ P C1 -20.4 -0.4 20.0 2400 588 trans Et₃P C1 −20.4 −0.4 20.0 2400 588 trau
Me₃P C1 −62.5 −25.1 37.4 3481 125 cis Me,PhP c1 -46.9 - 15.8 31.1 3550 130 cis Me₂PhP Br -46.9 -15.8 31.1 3506 -113 cis Me,PhP Br –46.9 – 15.8 31.1 3506 – 113 cis
Me,PhP I –46.9 – 18.0 28.9 3374 – 149 cis Me₂PhP I -46.9 -18.0 28.9 3374 -149 cis
Me₂PhP I -46.9 -23.6 23.3 2312 -595 trans Me_prnr – I –46.9 –23.6 23.3 2312 – 595 trai
MePh₂P – Cl –28.2 – 2.6 25.6 3621 96 cis MePh,P C1 --28.2 --2.6 25.6 3621 96 cis
MePh,P Br --28.2 9.8 38.0 3576 --165 cis MePh,P Br ~28.2 9.8 38.0 3*576 ~*16*5* cis
MePh,P I ~28.2 7.2 3*5.4* 343*5 236* cis MePh₂P I -28.2 7.2 35.4 3435 236 cis
MePh₂P I -28.2 4.4 32.6 2392 -203 trans

MePh₂P I - 28.2 4.4 32.6 2392 - 203 trans
 a In hertz. $b \Delta \delta(^{31}P) = \delta(^{31}P_{\text{complex}}) - \delta(^{31}P_{\text{ligand}})$. ^{*c*} Data were obtained at 50-kHz sweep width, 8K data points, and 12.2-Hz data-point resolution. Consequently, uncertainties are of this magnitude.

Platinum Phosphole Complexes

Table **VI.** Coordination Chemical Shift Equations: $\Delta\delta$ ⁽³¹ P) = $A[\delta$ ⁽³¹ P_{ligand})] + B

$L = 1-R-3,4$ dimethylphospholes	A	B	مر	
cis - L_2 Pt Cl_2 cis -L ₂ $PtBr2$ cis L , PtI ,	-0.110 -0.411 -0.283	14.06 11.37 9.35	0.66 0.97 0.95	
L, P _t Cl, triplet doublet L, PtBr,	-0.345 -0.779	12.38 39.61	0.91 0.83	
triplet doublet L, PtI,	-0.380 -0.733	13.30 35.79	0.92 0.82	
triplet doublet	-0.346 -0.449	11.41 35.14	0.99 0.32	

^a The correlation coefficient.

giving rise to the familiar ¹⁹⁵Pt "satellites". Hence, one observes a pseudotriplet with relative intensities of 1:4:1 in the $3^{1}P{^1H}$ NMR of either isomer with $^1J_{\text{PtP}}$ being the separation of the two outer lines of the pseudotriplet. The $^{195}Pt{^1H}$ NMR spectrum exhibits first-order triplets for each isomer (31P, *I* $=$ $\frac{1}{2}$, 100% abundance) with $\frac{1}{J_{\text{PtP}}}$ being the separation of the lines in the triplet. The resonance due to the trans isomer is found upfield of that of the cis isomer for both ³¹P and ¹⁹⁵Pt nuclei. Platinum-phosphorus coupling constants of the cis isomers are significantly greater $(>3000 \text{ Hz})$ than those of the trans isomers $(\leq 2400 \text{ Hz})$, and this is consistent with previous NMR observations^{33,34} of Pt(II)-phosphine complexes. The smaller downfield chemical shifts and small Pt-P coupling constants in the trans complexes relative to those in the cis complexes are manifestations of the weaker Pt-P bonds in the trans complexes as a result of the large trans influence³⁵ of the phospholes. The magnitude of the difference in these parameters for the cis and trans phosphole complexes is the same as that observed for typical phosphine complexes. This suggests that platinum-phosphole and platinum-phosphine bonds have similar strengths.

For each of the chloride, bromide, and iodide series of L_2 Pt X_2 complexes, a linear relationship is exhibited between the coordination chemical shift, $\Delta\delta(^{31}\text{P})$, and the free-ligand chemical shift, $\delta({}^{31}P_{\text{isand}})$, of the form $\Delta \delta({}^{31}P) = A[\delta({}^{31}P)]$ + *B* as illustrated in Table VI. The phosphorus coordination chemical shift is indicative of the amount of electron density on phosphorus in the complex, and when chloride is replaced by bromide or iodide, we observe a decrease in $\Delta \delta$ (³¹P) in the order $Cl > Br > I$. This occurs for $Pd(II)$ -phosphole complexes2" as well as for **Pt(I1)-trialkylphosphine** complexes36 and has been attributed to the increasing trans influence of the heavier halides, which allows for progressively less phosphorus σ donation. As a result, the coordinated phosphole has a character more like that of the free ligand as the halide trans to its becomes a better σ donor. In addition, $^1J_{\text{PtP}}$ decreases in the order $Cl > Br > I$ for the same reason, and both of these trends are wholly consistent with each other and the trans influence.

Close examination of the NMR data reveals that the **1-R-**3,4-dimethylphospholes exhibit ligand behavior that is **sig**nificantly different from that of phosphines, and the following observations may be made concerning this behavior.

 (A) ¹ J_{Pr} is smaller for phosphole complexes than for analogous phosphine complexes. This is best illustrated by

Figure 3. ³¹ $P{^1H}$ } NMR of $L_2P{tBr_2}$ and $L_2P{tBrCl}$ (L = 1,3,4-trimethylphosphole) in $CH₂Cl₂$ at 300 K.

comparing the data for the $[(CH₃)₂PC₆H₅]₂PtX₂ completes$ with those for $(1$ -phenyl-3,4-dimethylphosphole)₂PtX₂ complexes (Table V). A smaller value of ${}^{1}J_{\text{PtP}}$ in the phosphole complexes points to less **s** character and therefore more p character in the platinum-phosphole bond than in the platinum-phosphine bond and suggests that the phosphole is more electronegative than the phosphine in agreement with Bent's rules.37 This idea is supported by the observation that, upon coordination, the change in ${}^{1}J_{\text{PC}}$ (phenyl) for 1-phenyl-3,4dimethylphosphole is more positive $(\Delta J_{\rm PC} = +59.2)$ than that observed for dimethylphenylphosphine (ΔJ_{PC} = +52.5), indicating more s character in the phosphole phosphorus-carbon bonds and therefore more p character in the phosphole phosphorus-platinum bond.

(B) In the correlations of the coordination chemical shifts (Table VI) the values of *B* represent an average coordination chemical shift. For Pt(I1)-phosphole complexes this value is generally less than that found for similar Pt(I1)-phosphine complexes (vide infra). Thus, upon coordination, there is less of an apparent change in electron density on the phosphole phosphorus than on the phosphine phosphorus. In addition, the phosphole ring α carbons (Table IV) are more shielded for the coordinated ligand than for the free ligand,³⁸ while the remaining carbons become deshielded upon coordination. By comparison, the methyl carbons of dimethylphenylphosphine become deshielded upon coordination to platinum($\Delta\delta(^{13}C)$ = +0.9). The shielding of the phosphole ring α carbons upon coordination is most likely largely the result of a polarization of the phosphole $C=C$ double bonds due to the increase of the positive charge on phosphorus upon coordination.²⁷ This same effect was observed in the ${}^{13}C(^{1}H)$ NMR spectra of the analogous palladium complexes.28

(C) Within each halide grouping, $\delta(^{195}Pt)$ correlates linearly with $\Delta\delta$ ³¹P) ($r = 0.92$). In this correlation the complex with the smallest value for $\Delta\delta$ (³¹P) has the most bulky ligand²⁸ and the most shielded platinum nucleus. The values of $\Delta\delta$ ⁽¹³C) for the ring α carbons also show that the complex with the bulkiest ligand has the least shielded α carbons relative to those of the free ligand. **A** bulky substituent would not allow a relatively close approach to platinum, resulting in a weakened platinum-phosphorus bond.

(D) Superficially, the trend for ${}^{1}J_{\text{PtP}}$ within a given halide grouping does not support the π -bonding argument. However, *'Jptp* primarily reflects the **s** character in the Pt-P bond, and as such, the trend results from a combination of steric and electronic effects of the exocyclic substituent R.

(37) Bent, H. A. *Chem. Rev.* **1961,** *61,* **275.**

⁽³³⁾ Pidcock, A.; Richards, R. E.; Venand, L. M. *Proc. Chem.* **Soc.,** *tondon* **1962, 184.**

⁽³⁴⁾ *Grim.* **S.** *0.;* **Keiter, R. L.; McFarlane, W.** *Inorg. Chem.* **1967.6, 1133. (35) Pldcock, A.; Richards, R. E.; Venanzi,** L. **M.** *J. Chem.* **SOC.** *A* **1966, 1707.**

⁽³⁶⁾ Mather, G. G.; Rapsey, G. J. N.; Pidcock, A. *Inorg. Nucl. Chem. Lett.* **1973,** *9,* **567.**

⁽³⁸⁾ Gray, G. A.; Nelson, J. H. *Org. Magn. Reson.* **1980,** *14,* **14.**

Table VII. ³¹ P and ¹⁹⁵ Pt NMR Data for the (1-R-3,4-dimethylphosphole)_nPtBrCl Complexes

" Trans to c1; all complexes were in CH,CI, solution at **25** "C. Positions are relative to external **85% H,PO,** with downfield positions positive. uncertainties are of this magnitude. a sbp \equiv square-based pyramid.

Trans to Br. ^c Data were obtained at 50-kHz sweep width with 8K data points and 12.2-Hz data-point resolution. Consequently, sare of this magnitude. ^d sbp = square-based pyramid.

ioned earlier, care must be taken to As mentioned earlier, care must be taken to allow sufficient reaction time when preparing L_2PtBr_2 and L_2PtI_2 by metathesis of L_2PtCl_2 as these reactions are slow. Crystalline materials were isolated from the reactions of L_2PtCl_2 with NaBr, which, when dissolved in CH_2Cl_2 , gave ${}^{31}P_1{}^{1}H_1$ and **195Pt{1H)** NMR spectra (Table VII) that suggested that these materials were a mixture of $L_2PtClBr$ and L_2PtBr_2 . The L₂PtC1Br species exhibited two doublets with accompanying ¹⁹⁵Pt "satellites" (Figure 3) in their ³¹P{¹H} NMR, establishing that these complexes possessed the cis geometry with two phosphorus nuclei in magnetically different environments, one trans to chloride and one trans to bromide. If these solutions contained a mixture of L_2PtCl_2 and L_2PtBr_2 , we would observe two singlets in the ³¹P NMR with accompanying ¹⁹⁵Pt satellites regardless of the geometry of the L_2PtCl_2 and L_2PtBr_2 complexes. The magnitude of the Pt-P coupling constants would distinguish cis $(J_{\text{PtP}} > 3000 \text{ Hz})$ from trans $(J_{\text{PtP}} < 2400 \text{ Hz})$. If L2PtBrCl possessed the trans geometry, its 31P NMR spectrum would also be a singlet with ¹⁹⁵Pt satellites and for it ¹J_{PtP} should be intermediate between the values of *trans*- L_2 PtBr₂ and *trans*- L_2 PtCl₂ and be in the vicinity of 2000 Hz. We observed no trans isomers in these solutions, as values of ¹J_{PtP} ranged from 3254 to 3352 Hz. The platinum-phosphorus coupling constants for the magnetically inequivalent phospholes in $cis-L₂PtBrCl$ reflect the difference in the trans influence of bromide and chloride, with J_{PP} for the phosphole trans to chloride being greater than J_{PtP} for the phosphole trans to bromide, typically by 5-10 **Hz.** Values of **6(195Pt)** (Table VII) are intermediate between those of cis-L₂PtCl₂ and cis-L₂PtBr₂ as would be expected.³⁰

These data clearly establish that bromide substitution of chloride is stereospecific for these complexes in both steps of reaction 1 and is a good example of the trans effect in operation.

$$
cis-L_2PtCl_2 \frac{+Br^-}{+Cr^-} cis-L_2PtBrCl \frac{+Br^-}{+Cr^-} cis-L_2PtBr_2
$$
 (1)

11. Five-Coordinate Complexes. Addition of excess phosphole to CH_2Cl_2 , CDCl₃, or CH₃OH solutions or L_2PtX_2 **causes** a change from pale yellow to deep red, and the resulting solutions show nonelectrolyte behavior (no measurable conductance). At 25 °C the ³¹P(¹H) NMR in either CH_2Cl_2 or CDCl₃ shows that rapid intra- and intermolecular exchange is occurring, as only broad resonances are observed at **25** "C. When these solutions are cooled to -50 \textdegree C, A₂X ³¹P NMR spectra are observed (Table VIII) with a downfield doublet arising from two mutually trans phosphorus nuclei and an upfield triplet representing the unique phosphorus nucleus, which is cis to the other two phospholes (Figure **4).** For the L_3PtX_2 complexes, phosphorus shielding of the mutually trans phospholes increases in the order $Cl < Br < I$ and mimics the behavior of the four-coordinate complexes. The shielding of the remaining phosphole varies in the order $Br < Cl < I$.

Table **VIII.** 31 P and **I9** 5Pt NMR Data for the **(l-R-3,4-dimethylphosphole)** ,PtX, Complexes

³¹ P and ¹⁹⁵ Pt NMR Data for the Table VIII. $(1-R-3, 4$ -dimethylphosphole), $P(X,$ Complexes								
R	X	<i>T.</i> K	$\delta(^{31}P)^a$	$^{2}J_{\rm PP}$	$J_{\rm PtP}$	$\delta(^{31}P)^{a}$	$J_{\rm PtP}$	$\delta(^{195}Pt)^b$
CH ₃	a	203	15.7d	19.5	2153	$-2.9t$	3159	-247
n Bu	C1	216	25.4d	19.5	2143	7.8t	3154	-282
t-Bu	Cl	216	40.1 d	19.5	2196	29.2 t	3234	-344
Ph	Cl	203	24.3 d	22.0	2246	9.5t	3127	-308
Bzl	C1	203	29.4 d	19.5	2246	15.2 t	3310	-300
CH ₂	Вr	216	12.5 d	21.9	2125	$-0.6t$	3130	-414
$n - Bu$	Br	216	21.6d	19.6	2120	7.7t	3125	-406
t-Bu	Вr	216	35.9d	19.5	2178	29.4 t	3203	-496
Ph	Вr	203	20.8 d	220	2231	10.8t	3110	-491
Bzl	Bг	203	26.0d	19.0	2235	16.3 t	3291	-490
CH,	I	216	5.4 d	220	2108	$-1.8t$	3039	-244
Ph	I	205	14.4 d	22.0	2207	10.2 t	2993	-348
Bzl	I	203	19.8 d	19.5	2214	9.0 t	3159	-283

^a All complexes were in CH_2Cl_2 solution. Positions are relative to external 85% H₃PO₄ with downfield positions positive; $d =$ doublet, t = triplet. Data obtained at **5CkkHz** sweep width with **8** K data points and **12242** data-point resolution. Consequently, uncertainties are of this magnitude.

Figure 4. ³¹P{¹H} NMR of (1-tert-butyl-3,4-dimethylphosphole)₃PtCl₂ at **216 K** in **CH2Cl2.** The small resonance downfield of the triplet is due to *trans*-L₂PtCl₂.

Consistent with the 31P(1H) NMR, the **195Pt(1H)** NMR spectra of these solutions at -50 °C (Table VIII) are first-order doublets of triplets. For L3PtX2, **6(195Pt)** is more shielded than δ ⁽¹⁹⁵Pt) for L₂PtX₂ as one might expect for the addition of another phosphole, and $\delta(^{195}Pt)$ for \dot{L}_3PtX_2 increases in the order $I < Cl < Br$. For both types of phospholes in L_3PtX_2 , $^{1}J_{\text{Pp}}$ decreases in the order Cl $>$ Br $>$ I, and within a given halide grouping there is no apparent trend.

As illustrated in Figure 5 a $CH₂Cl₂$ solution of an equimolar mixture of 1-phenyl-3,4-dimethylphosphole (L) and L_2PtCl_2 contains a temperature-dependent equilibrium mixture of

Figure 5. Variable-temperature 31P(1H) NMR of a 1:l molar mixture of (1-phenyl-3,4-dimethylphosphole)₂PtCl₂ and free phosphole in $CH₂Cl₂$

Table IX. Equilibrium Thermodynamics for **the Reaction**

				CDCI3		
R	x	ΔG_{300} , kcal/mol	ΔН. kcal/mol ^a	ΔS , eu ^b	intra,	$T_{\tt inter}$ ïζ
$t\text{-}C_{4}H_{2}$	C1	1.28	-3.0	-14.2	~293	~18
$t\text{-}C_{4}H_{2}$	Bг	1.65	-4.1	-19.0	$~1$ 303	>333
C_4H_5	Cl	0.69	-24	-10.2	~263	~103
C_6H_5	Bг	1.53	-26	-13.7	~270	$~1$ 303

^{*a*} The uncertainties in ΔG and ΔH are believed to be 0.5 kcal/ mol. $\ ^{b}$ The uncertainty in ΔS is believed to be 1 eu. $\ ^{c}$ Approx**imate coalescence temperatures** for **intramolecular exchange within** L_3 PtX₂ (T_{intra}) and intermolecular exchange between L_3 PtX₂, L_2 PtX₂, and **L** (T_{inter}) .

 L_3PtCl_2 , cis- L_2PtCl_2 , and L (although no free L is detected by 31P NMR, and this phenomenon has been previously observed²⁶). The L_3PtCl_2 complexes are stereochemically nonrigid in CH_2Cl_2 in the temperature range 203-263 K, and they slowly equilibrate with cis -L₂PtCl₂ in solution. The exchange of L_3PtCl_2 is largely intramolecular over this temperature range as spin correlation of platinum and phosphorus nuclei is maintained. Above *263* K intramolecular rearrangement of L_3PtCl_2 becomes increasingly rapid as evidenced by the loss of 31P-31P coupling, while intermolecular exchange does not become rapid until 303 K, where the respective ${}^{31}P_1{}^{1}H_1$ resonances coalesce.

The temperature dependence of the ³¹P(¹H) NMR pertinent to the equilibrium $L_2PtX_2 + L \rightleftharpoons L_3PtX_2$ for four sets of complexes is described by the thermodynamic quantities listed in Table IX. These data show that the formation of L_3PtX_2 from L_2 Pt X_2 is enthalpy favored and entropy disfavored when $L =$ phosphole II. This suggests to us that the steric bulk of L is very important in determining the stability of L_3PtX_2 complexes.

The relative solution dynamics also depend on L, as indicated by the approximate coalescence temperatures for intraand intermolecular ligand exchange (Table IX). These findings are in agreement with previous observations,³⁹ which indicate that the rate of intramolecular exchange in pentacoordinate compounds is inversely proportional to ligand bulk. The L_3 Pt X_2 phosphole complexes are thermodynamically less

stable, are more labile toward intermolecular ligand exchange, and exhibit greater stereochemical rigidity than do the isoleptic $[L'_{5}Pt]^{2+}$ complexes, where L' is a phosphite.³⁹ This is most likely due to the phosphole's steric nature as it is clear that phospholes have a much larger Tolman cone angle than phosphites due to their relatively large CPC exocyclic angle (1 *06O* in 1 -benzylphosphole).

If the CH_2Cl_2 is evaporated from the above solutions and the residue is dissolved with filtering into $CH₃OH₃³¹P₁¹H₁$ and ¹⁹⁵Pt{¹H} NMR spectra of the CH₃OH solutions are the same in CH₃OH at 299 K as they were in CH₂Cl₂ at 223 K. The pentacoordinate species are therefore considerably more rigid in CH₃OH solution than in CH₂Cl₂ solution. It was anticipated that the higher dielectric solvent (methanol) would promote the formation of the ionic species $[L_3PtX]^+X^-$ from L_3PtX_2 , but the methanol solutions have no conductance. In addition the mixtures containing $L_3PtClBr$ and L_3PtBr_2 show no anion scrambling in either methanol or dichloromethane; the ${}^{31}P{}_{1}{}^{1}H$ } and ${}^{195}P{}_{1}{}^{1}H$ } NMR clearly show the existence of both species in methanol.

Louw recently concluded¹⁶ that intramolecular ligand exchange must be faster than intermolecular ligand exchange for cis-trans isomerization to occur through a pentacoordinate state, and this tenet is supported by the data for the phosphole L₂PtX₂ complexes. However, his statement that "isomerization" in the platinum halide-phosphine square-planar system tends to proceed when a stable five-coordinate intermediate can be formed" must be reconsidered. Each of the four phosphole complexes studied is cis at room temperature in the absence of excess ligand, yet only the complex that forms the least thermodynamically stable and most rigid L_3PtX_2 species (L $= 1$ -tert-butyl-3,4-dimethylphosphole, $X = Br^-$) isomerizes in the presence of excess phosphole. We suggest that when the energy difference between cis and trans complexes is great, phosphorus ligand-catalyzed cis-trans isomerism will not occur; rather, an equilibrium between cis-L₂PtX₂ and L₃PtX₂ will be established (Figure *6).* The energy differences among the various species are likely due to a combination of ligand steric and electronic effects, which will affect the relative energies of all species in Figure *6.* This rationalizes Haake's observations 4 regarding the lack of ligand exchange in the phosphine-catalyzed isomerization of $(R_3P)_2P_1X_2$ complexesconditions can arise where the ligand is small enough to allow formation of a pentacoordinate species but large enough to give a sizeable barrier to pseudorotation. Hence, when L_3PtX_2 species are not stable enough to form as intermediates, any of the three mechanisms (Figure **7)** can occur and solvent will probably dictate which is operational: polar solvents^{10,16} favor the consecutive neutral-ligand displacement. The validity of Haake's postulate of a unique coordination site for the catalyzing ligand will therefore depend on the nature of that ligand. His failure to observe ligand exchange is not surprising-while $LL'MX_2$ complexes might be more stable in solution than symmetric L_2MX_2 complexes,⁴⁰ this is generally not so in the solid state.⁴¹ We believe that only in rare cases will the pseudorotation mechanism dominate.

After this study was completed, Favez and Roulet⁴² independently reached similar conclusions regarding the likelihood

⁽³⁹⁾ Jesson, J. P.; Muetterties, E. L. "Dynamic Nuclear Magnetic Resonance Spectroscopy"; Jackman, L. M., Cotton, F. A., Eds.: Academic Press: New York, 1975; p 253 ff.

⁽⁴⁰⁾ Verstuyft, A. W.; Redfield. D. A,; Cary, L. W.; Nelson, J. H. *Inorg. Chem.* **1976.15, 1128.**

⁽⁴¹⁾ Haake's proposal of the unique coordination site rests **upon his inability** to isolate mixed-ligand complexes of the type LL'MX₂ from solutions of L_2MX_2 and L'. Several examples of the formation of L'LMX₂ in
solution have been reported,⁴⁰ which show that in solution the equilib-
rium $L_2MX_2 + L'_2MX_2 \rightleftharpoons 2LL'MX_2$ favors the LL'MX₂ species. In
each of thes **stabilities.**

⁽⁴²⁾ Favez, R.; Roulet, R. *Inorg. Chem.* **1981,** *20,* **1598.**

Figure **6.** Pseudorotation mechanism energy profile.

Figure 7. Energy profiles for isomerization mechanisms of L₂MX₂: (1) pseudorotation, (2) consecutive anion displacement, and (3) consecutive neutral-ligand displacement. The energies of the $ML_2L'X_2$ species need not be the same, but they probably will not differ by more than vibrational energy differences.

of the pseudorotation mechanism. Their conclusions are, however, stronger than ours. They state "there is **no** evidence that a Berry-type pseudorotation is a low-activation-energy process in $\dot{ML}_3\dot{X}_2$ (M = Pd,Pt)". Our data suggest that Berry pseudorotation does have a low-activation-energy barrier for the phosphole complexes, but it generally does not result in geometrical isomerization of L_2PtX_2 (L = phosphole) complexes.

Experiments similar to those described above were performed with Pd(I1) phosphole complexes, and the observed

Figure 8. Possible structures of L_3PtX_2 complexes that are consistent with the spectroscopic data. On the basis of three crystal structures for $L'_{3}PdX_{2}$ complexes,⁴⁴ we favor the square-based-pyramidal geometry.

pentacoordinate species were uniformly less stable and less rigid than their platinum counterparts. With the exception of one complex, cis-trans isomerization was not observed in the platinum(I1) system upon addition of excess phosphole. In contrast, addition of excess ligand readily catalyzed cis-trans isomerization for each of the Pd(I1) complexes studied, with only very small amounts of L_3PdX_2 being detected. The equilibrium thermodynamical values calculated for these solutions are in agreement with those previously obtained²⁹ for solutions containing only L_2PdX_2 .

Recently, Pfeiffer demonstrated⁴³ carbon monoxide catalyzed isomerization of cis-PtCl₂($n-Bu_3P$)₂, and we attempted to achieve the same results with our cis-(phosphole)₂PtX₂ complexes. When CO was bubbled through $CH₂Cl₂$ solutions of these complexes, **no** color change occurred, **no** coordinated CO could be detected by IR spectroscopy, and the $^{31}P(^{1}H)$ NMR spectra of these solutions were identical with those of $cis-L_2PtX_2.$

The A_2X pattern displayed in the low-temperature ${}^{31}P_1{}^{1}H_1$ NMR spectrum of the L_1 PtX₂ species (Figure 4) is consistent with two trigonal-bipyramid and two square-base-pyramid configurations (Figure **8).** The ionic complex [L,PtX]+X-

⁽⁴³⁾ Pfeiffer, R. M. *Synth. React. Inorg. Met.-Org. Chem.* **1976,** *6, 55.*

would also give an A_2X pattern; however, the NMR data for the mixed-anion complexes and conductance data (vide supra) rule this out. Hypothetically, upon addition of excess ligand L to L_2 PtCl₂ and to L_2 PtBr₂, we could possibly observe L_3 -PtCl₂, L₃PtBr₂, [L₃PtCl]⁺Cl⁻, or [L₃PtBr]⁺Br⁻. Similarly, we would expect the addition of L to $L_2PtClBr$ to give $L_3PtClBr$, $[L₃PtCl]⁺Br⁻$, or $[L₃PtBr]⁺Cl⁻$. These last two forms would give ${}^{31}P_1^{11}H$ } and ${}^{155}P_1^{11}H$ } NMR spectra essentially identical with those for the dichloro and dibromo species, if ionic compounds were being formed in these cases. The results in Table **VI1** exclude the possibility of ionic complexes as the NMR spectra of L_2 PtClBr + L are substantially different from those of either $L_2PtCl_2 + L$ or $L_2PtBr_2 + L$. NMR spectroscopy alone cannot unambiguously determine the geometry of L_1 MX₂ species in solution, since the same A₂X pattern is expected for each of the four configurations (Figure 8). The solution geometries of the complexes are most likely distorted between SBP and TBP, consistent with the limited amount of structural data⁴⁴ for L_3 MX₂ complexes.

Acknowledgment. The financial support of the University of Nevada, Reno, Research Advisory Board is gratefully acknowledged. We are grateful to the National Science Foundation (Grant No. CHE77-08937) for providing funds to purchase the Fourier transform NMR spectrometer. Helpful

Registry No. $cis-L_2PtX_2$, R = CH₃, X = Cl, 81011-50-9; *cis-*L₂PtX₂, R = n-Bu, X = Cl, 81011-51-0; cis-L₂PtX₂, R = t-Bu, X $=$ Cl, 81011-52-1; cis-L₂PtX₂, R = Bzl, X = Cl, 81011-53-2; cis- L_2PtX_2 , R = Ph, X = Cl, 81011-54-3; cis- L_2PtX_2 , R = CH₃, X = Br, 81011-55-4; cis-L₂PtX₂, R = n-Bu, X = Br, 81011-56-5; cis- L_2 PtX₂, R = t-Bu, X = Br, 81011-57-6; cis-L₂PtX₂, R = Bzl, X = Br, 81011-58-7; cis-L₂PtX₂, R = Ph, X = Br, 81027-52-3; cis-L₂PtX₂, $R = CH_3$, $X = I$, 81011-59-8; trans-L₂PtX₂, $R = CH_3$, $X = I$, 81075-66-3; cis-L₂PtX₂, R = n-Bu, X = I, 81011-60-1; trans-L₂PtX₂, $R = n-Bu$, $X = I$, 81011-61-2; cis-L₂PtX₂, $R = t-Bu$, $X = I$, 81075-67-4; cis-L₂PtX₂, R = Bzl, X = I, 81011-62-3; trans-L₂PtX₂, $R = BzI, X = I, 81075-68-5; cis-L₂PtX₂, R = Ph, X = I, 81011-63-4;$ $cis-L_2PtBrCl$, $R = CH_3$, 81011-64-5; $cis-L_2PtBrCl$, $R = n-Bu$, 81011-65-6; cis-L₂PtBrCl, R = t-Bu, 81011-66-7; cis-L₂PtBrCl, R $=$ Ph, 81011-67-8; cis-L₂PtBrCl, R = Bzl, 81011-68-9; L₃PtBrCl, $R = CH_3$, 81011-69-0; L₃PtBrCl, $R = n-Bu$, 81011-70-3; L₃PtBrCl, $R = t-Bu$, 81011-71-4; L₃PtBrCl, $R = Ph$, 81011-72-5; L₃PtBrCl, R = Bzl, 81011-73-6; L₃PtCl₂, R = t-Bu, 81011-74-7; cis-L₂PtX₂, $L = BzI_3P$, $X = Cl$, 81075-69-6; trans-L₂PtX₂, $L = BzI_3P$, $X = Cl$, 63902-66-9; trans-L₂PtX₂, L = Bzl₂PhP, X = Cl, 63848-36-2; *cis-* L_2PtX_2 , $L = BzIPh_2P$, $X = Cl$, 61586-06-9; cis- L_2PtX_2 , $L = Bu_3P$, $X = CI$, 15390-92-8; cis-L₂PtX₂, L = Et₃P, X = Cl, 15692-07-6; $trans-L_2PK_2$, L = Et₃P, X = Cl, 13965-02-1; *cis*-L₂PtX₂, L = Me₃P, $X = \text{Cl}_1$, 15630-86-1; cis-L₂PtX₂, L = Me₂PhP, X = Cl, 15393-14-3; $cis-L_2PtX_2$, L = Me₂PhP, X = Br, 15616-81-6; $cis-L_2PtX_2$, L = Me_2PhP , $X = I$, 41119-52-2; trans-L₂PtX₂, L = Me₂PhP, X = I, 41 19-53-3; cis-L₂PtX₂, L = MePh₂P, X = Cl, 16633-72-0; cis-L₂PtX₂, L = MePh₂P, X = Br, 52613-13-5; cis-L₂PtX₂, L = MePh₂P, X = I, 28425-03-8; trans-L₂PtX₂, L = MePh₂P, X = I, 28425-02-7.

Contribution from the Kenan Laboratories of Chemistry, The University of North Carolina, Chapel Hill, North Carolina 27514

Electropolymerization of Vinylpyridine and Vinylbipyridine Complexes of Iron and Ruthenium: Homopolymers, Copolymers, Reactive Polymers

P. DENISEVICH, H. D. ABRURA, C. R. LEIDNER, T. **J.** MEYER,* and ROYCE **W.** MURRAY*

Received July 10, 1981

Electroreductive polymerizations of the vinyl-substituted monomer complexes $[Ru(vbyby)_3]^{2+}$, $[Fe(vbyby)_3]^{2+}$, $[Ru(bpy)_2(vpy)_2]^{2+}$, $[Ru(bpy)_2(vpy)Cl]^+$, $[Ru(vbyy)_2Cl_2]$, $[Ru(bpy)_2(vpy)NO_2]^+$, and $[Ru(bpy)_2(vbyy)]^{2+}$ are described, where vbpy = 4**vinyl-4'-methyl-2,2'-bipyridine** and vpy = 4-vinylpyridine, The polymers form stable, adherent, electrochemically reactive films on the reducing electrode, which can be Pt, Au, vitreous carbon, $SnO₂$, or $TiO₂$. Complexes with only one vinyl substituent are difficult to polymerize but can be copolymerized with divinyl- and trivinyl-substituted monomers. The possibility that the polymers are in **part** metal macroclusters with bridging ligands **is** discussed. Films containing from 4 to ca. 1500 monolayers of metal complex can be formed depending on the potential control conditions employed during polymerization. Charge transport through poly- $(Ru(vby)_3)^{2+}$ films occurs with $D_{ct} = 2 \times 10^{-10}$ cm²/s, which corresponds to an apparent [Ru- $(vby)_{3}]^{3+/2+}$ electron-self-exchange rate in the film of 1.7×10^{5} M⁻¹ s⁻¹. Quantitative reactivity of ruthenium centers in this film was demonstrated with use of spectrophotometry of films on $SnO₂$ electrodes, and composition was evaluated by X-ray photoelectron spectroscopy. The cross-linked, polycationic films are poorly permeable to cations and bulky, neutral molecules dissolved in the contacting solution but readily incorporate small anions. Chemical reactivity of poly-[Ru- $(bpy)_2(vpy)NO_2$ ⁺ is somewhat altered by the polymeric environment as compared to that of prior monolayer studies.

Binding of transition-metal complexes to preformed, ligand-containing polymers^{1,2} typically results, for steric and/or electrostatic reasons, in incomplete metalation of the polymeric ligand sites. This has been the case in recent studies involving the coating of electrodes with cobalt and ruthenium complexes bound to polyvinylpyridine. $2b,3-7$

- Tsuchida, **E.;** Nischide, H. *Adu. Polym. Sci.* **1977, 24, 1.** (a) Oyama, N.; Anson, F. C. J. *Am. Chem. SOC.* **1979,101,739.** (b) (2) *Ibid.* **1979, 101, 3450.**
-
- Couma, N.; Anson, F. C. J. Electrochem. Soc. 1980, 127, 247.
Oyama, N.; Shimomura, T.; Shigehara, K.; Anson, F. C. J. Electroanal.
Chem. Interfacial Electrochem. 1980, 112, 271. (4)
- Haas, **0.; Vos,** J. *G. J. EIectroanaL Chem. Inferfacial Electrochem.* **1980, 113, 139.**
- Calvert, J.; Meyer, T. J. *Inorg. Chem.* **1981,** *20,* **27.** Samuels, **G.** J.; Meyer, T. J. J. *Am. Chem. Soc.* **1981, 103, 307.**
-

We recently described⁸ the coating of electrodes by the reductive, electrochemical polymerization of several vinylpyridine and vinylbipyridine complexes of iron and ruthenium. The use of vinyl-substituted metal complexes as monomers offers the possibility of preparing polymeric films with essentially complete metalation of ligand sites and a well-defined coordination environment for the metal. Since the monomer metal complex approach to electroactive polymer films is uncommon, we have carried out studies aimed at better understanding the ruthenium vinylpyridine and vinylbipyridine electropolymerizations and the possible generality of the chemistry involved. These studies have included relative ease

⁽⁴⁴⁾ Louw, W. J.; deWaal, D. J. A.; Kruger, G. J. J. *Chem.* SOC., *Dalton Tram.* **1976,2364.** Chui, K. M.; Powell, H. M. *Ibid.* **1974,2117.** Chui, K. M.; Powell, H. M. *Ibid.* **1974, 1879.**

 (1)

⁽⁸⁾ Abrufia, H. D.; Denisevich, **P.;** Umafia, M.; Meyer, T. J.; Murray, R. W. J. *Am. Chem.* SOC. **1981, 103, 1.**